The use of boronate derivatives in the characterization of catecholamines and related β -hydroxy-amines by gas liquid chromatography-mass spectrometry

G. M. ANTHONY, C. J. W. BROOKS AND B. S. MIDDLEDITCH

Chemistry Department, University of Glasgow, Glasgow, W.2, U.K.

The gas chromatographic separation of various β -hydroxy-amines in the form of derived 1,3,2-oxazaborolidines is complemented by a mass-spectrometric study of cyclic boronates of natural catecholamines. These derivatives and their synthetic analogues yield characteristic mass spectra. Closely similar compounds, such as the n-butylboronates of the diastereoisomers (-)-ephedrine and (+)- ψ -ephedrine, give almost identical spectra but can be readily distinguished by their GLC retention times. The same can be said for the positional isomer pairs synephrine and phenylephrine, and for octopamine and 4-deoxynoradrenaline. Mass-spectrometric fragmentation modes are postulated from a comparison of the shifts in the masses of fragment ions corresponding to various substituents in the group of biological amines studied. Additional correlations are derived from studies of methyl-, cyclohexyl- and phenylboronates.

Various methods have been published for the separation of β -hydroxy-amines by gas chromatography (GLC), chiefly in connection with catecholamines and related compounds.

Biological amines of moderate polarity have been separated without prior modification, good resolution being obtained by coating the support with potassium hydroxide (Brochmann-Hansen & Svendsen, 1962; Parker, Fontan & Kirk, 1962; Beckett, Moffat & others, 1967; Beckett, Tucker & Moffat, 1967) or by using high percentages of stationary phase (Zwol, 1966). Other methods usually depend upon the use of derivatives having greatly reduced polarity in order to improve stability and resolution in GLC. Among the modifications described for this purpose are Schiff's base formation (Brochmann-Hansen & Svendsen, 1962; Beckett, Tucker & Moffat, 1967; Beckett & Wilkinson, 1965); silvlation of hydroxyl groups coupled with conversion of the amine to a Schiff's base or oxazolidine (Clarke, Wilk & others, 1967; Capella & Horning, 1966; Kawai & Tamura, 1967); silylation of hydroxyl groups and primary amino-groups (Sen & McGeer, 1963; Horning, Moss & Horning, 1967); silylation of hydroxyl groups followed by acetylation on the nitrogen atom (Horning, Moss & others 1968); and acetylation of hydroxyl and amino-groups (Brooks & Horning, 1964). The formation of trifluoroacetates (Kawai & Tamura, 1968), or the silvlation of hydroxyl groups followed by formation of N-heptafluorobutyryl derivatives (Horning & others, 1968), afford products with good electron-capture properties, thus allowing the detection of catecholamines in very small quantities. Many of the above derivatives are of value in mass spectrometry, especially for the more polar hydroxyamines. The mass spectra of various parent phenethylamines have been studied

(Teeter, 1966; Reisch, Pagnucco & others, 1968), but have the disadvantage that the molecular ion is of very low abundance in most cases.

Recently we have been examining various cyclic boronates to evaluate their use as derivatives for gas chromatography and mass spectrometry. Among the advantages boronates possess for analytical purposes are (i) the ease of their formation—the reaction taking place in most instances at room temperature without the use of a catalyst; (ii) their selectivity, enabling the proximity of functional groups to be verified; (iii) their potential value for separating diastereoisomers by GLC, as observed with (—)-ephedrine and (+)- ψ -ephedrine (Anthony, Brooks & others, 1969); and (iv) their characteristic mass spectra, usually including molecular ions in appreciable abundance (Brooks, Middleditch & Anthony, 1969). Earlier workers have described the preparative reactions of boronic acids (or their anhydrides) with a variety of bifunctional compounds, including 1,2-diols (Kuivila, Keough & Soboczenski, 1954; Sugihara & Bowman, 1958; Finch & Lockhart, 1962; Bowie & Musgrave, 1963; Ferrier, Prasad & others, 1964; Foster, Haines & others, 1965; Brooks & Watson, 1969) and β -hydroxy-amines (Pailer & Fenzl, 1961; Pribyl, Louis & Bernstein, 1961), to give cyclic derivatives. Thus catechol readily forms boronates (Fig. 1a; R = Cl, Buⁿ, Bu^t, Ph, etc.):

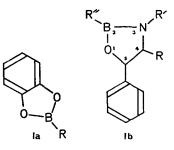


FIG. 1. a. General formula of cyclic boronates derived from catechol. b. General formula of cyclic boronates derived from β -hydroxyphenethylamines.

similarly the phenylboronate (Fig. 1b; R = R' = Me; R'' = Ph) of (-)-ephedrine has been prepared. It was therefore of interest to explore the use of cyclic boronates in the protection of catecholamines for gas chromatography and in their characterization by mass spectrometry. Boronates of various β -hydroxy-amines, and bisboronates of β -hydroxy-catecholamines have been prepared. Their GLC properties have been found to be satisfactory (Anthony & others, 1969), provided that strongly polar groups are absent. The reactions did not proceed quantitatively under the mild conditions described: the best yields were observed if large substituents were present in the oxazaborolidine ring. Compounds having unsubstituted phenolic groups (e.g. octopamine) gave poorer yields.

EXPERIMENTAL

Combined gas chromatography-mass spectrometry was carried out with an LKB 9000 instrument: the ionizing voltage was 70 eV, source temperature 290° and accelerating voltage 3.5 kV. GLC retention data were obtained on a Carlo Erba "Fractovap GB" gas chromatograph with matching silanized glass U-tube columns (6 ft). The stationary phase was 1% OV-17 on Gas Chrom Q (100–120 mesh). n-Alkanes were used as standards.

206

The n-butylboronates were prepared by treatment of the β -hydroxy-amine (1 mg), in the form of its free base, hydrochloride, sulphate or tartrate, with n-butylboronic acid (1-1.5 molar equivalents) in pyridine (1 ml) which had been dried and distilled over sodium hydroxide. The free base could be conveniently prepared from the hydrochloride by exposing the pyridine solution of the hydroxy-amine salt to ammonia vapour and separating the precipitated ammonium chloride before derivative formation. For hydroxy-amines, such as isoprenaline sulphate, which were not sufficiently soluble in pyridine, a suitable reaction solvent was dimethylformamide which had been dried by azeotropic distillation with benzene and further distilled over anhydrous sodium sulphate.

In most cases, aliquots of the reaction mixture were injected directly on to the GLC column. In the reactions involving octopamine and 4-deoxynoradrenaline, cyclic derivatives appeared to be formed in low yield, and vacuum sublimation at $250^{\circ}/0.01$ mm Hg was used to separate the derivative (in its free-base form) from non-volatile material.

Mass spectrometry

The cyclic nature of boronate derivatives of bifunctional compounds in some cases directs the mode of mass-spectrometric fragmentation: this is observed for the 2substituted 1,3,2-oxazaborolidines derived from β -hydroxy-amines. Although the relative intensity of certain fragments is influenced by the substituent on the boron atom, the general mode of breakdown is the same for the methyl-, n-butyl-, cyclohexyland phenyl-boronates studied. The present discussion is concerned mainly with nbutylboronates, which have convenient gas-chromatographic properties (e.g. capacity for resolution of diastereoisomers, combined with moderate retention times). It should be noted that certain ions observed in the mass spectra of n-butylboronates evolve from fragmentation of the n-butyl substituent.

General formula	Parent compound		Substi	tuents	
	-	R	R'	R ³	R⁴
Bu ⁿ B-N R R	β -Hydroxyphenethylamine Norpseudoephedrine Phenylpropanolamine Pseudoephedrine Ephedrine Octopamine 4-Deoxynoradrenaline Synephrine Phenylephrine Normetanephrine Metanephrine	H Me Me H H H H H H	H H Me H H Me Me H Me	H H H H OH OH OMe OMe	H H H H H O H O H O H O H
1 R ⁴	Noradrenaline	Ĥ	Н	Bu ⁿ ⋅B	02
N	Adrenaline	н	Me	Bu ⁿ ⋅B	
	Isoprenaline	н	Pr ⁱ	Bu ⁿ ⋅B	
	3,4-Dihydroxynorephedrine	Me	н	Bu ⁿ ⋅B	O_2

FIG. 2. Structural formulae of n-butylboronates of β -hydroxy-amines.

Fig. 2 shows the general formula of the 2-n-butyl-1,3,2-oxazaborolidines, together with the substituents in the compounds studied.

Postulated representations of the main fragments from the mass spectra of the nbutylboronates of β -hydroxy- β -arylethylamines are shown in Fig. 3, and the principal ions observed in the compounds studied are listed in Table 1.

of n-put	l breakdown of n-but	ylboronates of eta -hydroxy- eta -arylethylamines	
	breakdow	of n-put	
Mass spectra		Table 1.	

Parent compound	Molecular ion				M/e and	1 type of 1	M/e and type of major fragments*	ments*				M/e ar	M/e and type of other diagnostic fragments	other dias	mostic fra	ements
β-Hydroxyphenethylamine	203	161 X	91 VI	90VIa	202 III	120 VIII	118 IV	4IV 68	146 II	117 V	104	174[
Norpseudoephedrine		202 III	91 VI	90 VIa	160 II	118 IV	216 VII	117 V	175 X	4IV 68	188 I	134 VIII				
Phenylpropanolamine		202 III	1V 16	90 VIa	118 IV	160 II	117 V	4IV 68	216 VII	175 X	132 —	188 I	134 VIII			
Pseudoephedrine		216 II	1V 16	132 IV	117 V	90 VIa	4IV 68	230 VII	811	105	174 II	(6%) 202 I	(%C) 189 X	148 VIII		
Ephedrine		216 III	1V 16	132 IV	117 V	90 VIa	230 VII	174 II	4IV 68	159		(%) 189 X		202 I		
Octopamine		107 VI	218 III	134 IV	177 X	133 V	105 VIb	162 II	136 VIII	136 VIII 106 VIa	135 IX	(%7) 1001		(%7)		
4-Deoxynoradrenaline		107 VI		134 IV	177 X	133 V	105 VIb	162 11	136 VIII 106 VIa	106 VIa	135 IX	(%1) 1061				
Synephrine		191 X		107 VI	150 VIII	148 IV	106 VIa	133 V	120 —	105 VIb	176 II	(18%) 149 IX	204 I			
Phenylephrine		191 X	232 III	107 VI	149 IX	148 IV	120 —	133 V	150 VIII 134 —	134 —	105 VIb	(13%) 176 II	204 I			
Normetanephrine	249 249	137 VI	248 III	219 —	218 —	163 V	232 —	135 VIb	166 VIII 136 VIa	136 VIa	150 —	(21%) 192 II		165 IX	220 I	207 X
Metanephrine		262 UI	137 VI	180 VIII	179 IX	221 X	163 V	164 —	246 —	146 —	136 VIa		206 II	(%c1) 234 I	(14%)	%A)
Noradrenaline		300 [[]	189 VI	217 IX	216 IV	218 VIII	215 V	188 VIa	244 II	259 X	272 I	(%/1)	(%)	(%c)		
Adrenaline		273 X	314 III VIII	231 IX	232 VIII	189 VI	230 IV	188 VIa	258 II	202 —	215 V	4IV 181				
3,4-Dihydroxynorephedrine	315 (46%)	300 III	189 VI	314 VII	188 VIa	216 IV	215 V	230 —	273 X	258 11	231 —	(10%) 286 I	232 VIII			

²⁰⁸

^{*} In order of abundance.

As can be seen in Table 1, the molecular weight was easily determined in each of the compounds studied, as a fairly prominent parent ion was obtained in each case. The substituents on C-4 of the oxazaborolidine ring (hydrogen atom or methyl group) can readily be identified by their loss, principally to give ions of type III (Fig. 3). The ratio of ¹⁰B to ¹¹B in this fragment indicates whether one or two molecules of n-butylboronic acid have been incorporated into the molecule. The nature of the substituents on N-3 (hydrogen atom or a methyl group) can be inferred from the transition IV \rightarrow V (Fig. 3) where the group is eliminated as a radical (the exceptional case of the *N*-isopropyl derivative, isoprenaline butylboronate, is discussed later).

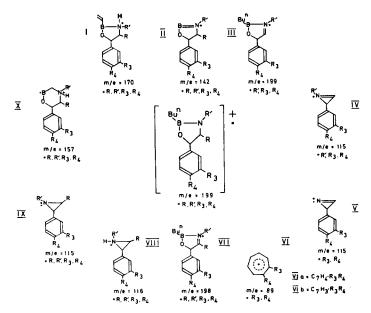


FIG. 3. Postulated representations of the principal fragments from the mass spectrometric breakdown of n-butylboronates derived from β -hydroxyphenethylamines.

Table 2.	GLC retention indices of n-butylboronates of β -hydroxy- β -arylethylamines on
	1% <i>OV</i> -17

Parent com	ipoun	ıd				Temp. °C	Retentio Index
β-Hydroxyphenethylamin	e					140	1799
Norpseudoephedrine				••		140	1774
Phenylpropanolamine	•					140	1776
Pseudoephedrine						140	1782
Ephedrine					••	140	1796
Octopamine	•					170	2218
4-Deoxynoradrenaline			••	••	••	170	2203
Synephrine						170	2185
Phenylephrine			••		• •	170	2171
Normetanephrine				••	• •	190	2315
Metanephrine						190	2270
Noradrenaline		• •		••	••	190	2478
Adrenaline	•					190	2438
3,4-Dihydroxynorephedri	ne					1 90	2450
Isoprenaline				••	••	190	2512

In the compounds studied, the substituents on the benzene ring are retained in fragments of type V, where the hydroxy-amine side-chains are reduced to a common moiety (C_2H_2N), and of types VI, VIa and VIb, which are hydrocarbon fragments. These relatively prominent ions readily indicate the combined molecular weights of the substituents on the benzene ring (cf. Reisch & others, 1968). Certain other fragments arise from the breakdown of hydroxyl and methoxyl substituents on the benzene ring. Thus synephrine gives an ion at m/e = 216 due to loss of \cdot OH. Metanephrine gives a similar ion at m/e = 246 and also one at m/e = 232 due to loss of \cdot OMe.

As noted above, the spectra of n-butylboronates contain, sometimes as major ions, fragments dependent on the presence of the n-butyl substituent. Thus, the ion of type X is the base peak in the spectra of β -hydroxyphenethylamine n-butylboronate, synephrine n-butylboronate and adrenaline bis-n-butylboronate. When this fragment is predominant, the two daughter ions VIII and IX can also be observed. The fragment I appears to arise by loss of Et from the butyl side-chain.

FIG. 4. Mass spectra of n-butylboronates of synephrine and 3,4-dihydroxynorephedrine. Samples were introduced into the mass spectrometer through a 10-ft column packed with 1% OV-17 on Gas Chrom Q. Conditions of measurement were as stated in the Experimental section.

Representative results are depicted in Fig. 4, in which the mass spectra of 3,4dihydroxynorephedrine bis-n-butylboronate and synephrine n-butylboronate are given and the fragment types indicated.

Isoprenaline n-butylboronate gave only two major fragments. The first (m/e = 328) is presumably due to loss of Me from the isopropyl group on the nitrogen atom. The other predominant peak (m/e = 244) is most likely due to further loss of BuⁿBO (Fig. 5).

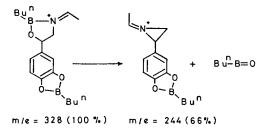


FIG. 5. A postulated fragmentation in the mass spectrometric breakdown of isoprenaline n-butylboronate.

This transition is verified by a metastable peak at $m/e = 181 \cdot 8$.

Within the group of compounds studied, substituents in the benzene ring appear to have little effect on fragmentation, which is accordingly insensitive to positional isomerism in the ring. Consequently, n-butylboronates of octopamine and 4-deoxynoradrenaline, which have a free phenolic group at the *para-* and *meta-*position respectively, cannot be effectively distinguished by their mass spectra. Their retention times are, however, different (Table 2).

Conversely, the n-butylboronates of ephedrine and β -hydroxyphenethylamine, which cannot be separated under the conditions used, can be detected in the presence of one another by virtue of their different mass spectra. This is illustrated in Table 3, which shows how the peak positions of the two compounds can be located by means of a multiple scanning technique by measuring the heights of the respective base peaks for each scan.

Table 3. The effect of multiple scanning GC-MS, for a mixture of ephedrine and β -hydroxyphenethylamine as n-butylboronates (10 ft column, 1% OV-17, 130°).

Retention Index of scan	Height of pe mass sp	
	m/e = 161	m/e = 216
1784		30
1786		74
1788	1	85
1791	7	57
1793	9	30
1796	9	19
1798	8	10

Gas liquid chromatography

The GLC properties of the boronates of β -hydroxy-amines (Anthony & others, 1969) and 1,2- and 1,3-diols (Brooks & others, 1968) have been examined previously in this laboratory. In the series of β -hydroxyphenethylamines studied, unsatisfactory peaks were obtained in the presence of free phenolic groups, especially for the derivatives of primary amines.

The problem of distinguishing between the diastereoisomers (-)-ephedrine (1R,2S configuration) and $(+)-\psi$ -ephedrine (1S,2S configuration) by GLC has been considered frequently in the literature. The methods so far reported (Brochmann-Hansen & others, 1962; Beckett & others, 1965) have been based on chemical conversion of the

G. M. ANTHONY, C. J. W. BROOKS AND B. S. MIDDLEDITCH

isomers by reaction with acetone to the corresponding oxazolidines. Although these two hydroxy-amines, as their boronates, cannot be distinguished by mass spectrometry, we have obtained separation of the n-butylboronates by GLC with a moderately polar column. The difference in retention behaviour was enhanced by using boronates with substituents bulkier than Bu^n on the boron atom. This is illustrated in Table 4.

Table 4. The effect of different groups on the boron atom (\mathbb{R}^n in Fig. 1b) in resolving the diastereoisomers ephedrine and ψ -ephedrine as their boronate derivatives by GLC

		Temp.	Retention	n Index (I)	
R″		(°C)	Ephedrine	ψ -Ephedrine	ΔI
Methyl		 90	1513	1509	4
n-Butyl		 140	1796	1782	14
t-Butyl		 130	1680	1669	11
Cyclohexyl		 150	2080	2064	16
Phenyl	••	 170	2258	2238	20

Conclusion

Qualitative analysis of catecholamines and related β -hydroxy-amines after reaction with n-butylboronic acid is possible by the combined gas chromatography-mass spectrometry technique. The boronic acid reacts under mild conditions both with the β -hydroxy-amine group to form a 1,3,2-oxazaborolidine ring and with the catechol grouping to form a 1,3,2-dioxaborole ring.

Mass spectrometry gives the molecular weight, indicates the mass of substituents at positions 2 and 4 of the oxazaborolidine ring, and gives the combined molecular weights of substituents on the benzene ring. Diastereoisomers on the oxazaborolidine ring and positional isomers on the benzene ring can be distinguished by GLC by use of a moderately polar stationary phase.

The reaction of n-butylboronic acid with β -hydroxy-amines as described above is not complete, but occurs without a catalyst. The selectivity of the reagent affords a clear distinction by GLC between catecholamines and their methylated analogues (e.g. adrenaline and metanephrine), and between compounds with and without a β -hydroxy-amine grouping.

Acknowledgements

We are indebted to the Medical Research Council for a grant supporting this work. The Carlo Erba gas chromatograph was purchased from a grant by the Scottish Hospital Endowments Research Trust (to C. J. W. B. and Professor T. D. V. Lawrie) and the LKB 9000 instrument from SRC grant B/SR/2398 (to C. J. W. B. and Dr. G Eglinton).

REFERENCES

ANTHONY, G. M., BROOKS, C. J. W., MACLEAN, I. & SANGSTER, I. (1969). J. chromat. Sci., 7, 623-631.

BECKETT, A. H., MOFFAT, A. C., ROWLAND, M., TUCKER, G. T. & WILKINSON, G. R. (1967). J. Chromat., 30, 199-202.

BECKETT, A. H., TUCKER, G. T. & MOFFAT, A. C. (1967). J. Pharm. Pharmac., 19, 273-294.

BECKETT, A. H. & WILKINSON, G. R. (1965). Ibid., 17, Suppl., 104S-106S.

212

- BOWIE, R. A. & MUSGRAVE, O. C. (1963). J. chem. Soc., 3945-3949.
- BROCHMANN-HANSEN, E. & SVENDSEN, A. B. (1962). J. pharm. Sci., 51, 938-941.
- BROOKS, C. J. W. & HORNING, E. C. (1964). Analyt. Chem., 36, 1540-1545.
- BROOKS, C. J. W. & WATSON, J. (1969). In C. L. A. Harbourn, Gas Chromatography 1968: Proc. 7th Intern. Symp. Gas Chromatography, Copenhagen, pp. 129–141. London: Institute of Petroleum.
- BROOKS, C. J. W., MIDDLEDITCH, B. S. & ANTHONY, G. M. (1969). Org. Mass Spectrometry, 2, 1023–1031.
- CAPELLA, P. & HORNING, E. C. (1966). Analyt. Chem., 38, 316-321.
- CLARKE, D. D., WILK, S., GITLOW, S. E. & FRANKLIN, M. J. (1967). J. Gas Chromat., 5, 307-310.
- FERRIER, R. J., PRASAD, D., RUDOWSKI, A. & SANGSTER, I. (1964). J. chem. Soc., 3330-3334.
- FINCH, A. & LOCKHART, J. C. (1962). Ibid., 3723-3726.
- FOSTER, A. B., HAINES, A. H., INCH, T. D., RANDALL, M. H. & WEBBER, J. M. (1965). Carbohydrate Res., 1, 145-155.
- HORNING, M. G., MOSS, A. M. & HORNING, E. C. (1967). Biochim. Biophys. Acta, 148, 597-600.
- HORNING, M. G., Moss, A. M., BOUCHER, E. A. & HORNING, E. C. (1968). Analyt. Lett., 1, 311-321.
- KAWAI, S. & TAMURA, Z. (1967). Chem. pharm. Bull., Tokyo, 15, 1493-1497.
- KAWAI, S. & TAMURA, Z. (1968). Ibid., 16, 699-701, 1091-1094.
- KUIVILA, H. G., KEOUGH, A. H. & SOBOCZENSKI, E. J. (1954). J. org. Chem., 19, 780-783.
- PAILER, M. & FENZL, W. (1961). Monatsh, 92, 1294-1299.
- PARKER, K. D., FONTAN, C. R. & KIRK, P. L. (1962). Analyt. Chem., 34, 1345-1346.
- PRIBYL, E. S., LOUIS, H. & BERNSTEIN, J. (1961). U.S. Pat. 3,137,723.
- REISCH, J., PAGNUCCO, R., ALFES, H., JANTOS, N. & MÖLLMANN, H. (1968). J. Pharm. Pharmac., 20, 81–86.
- SEN, N. P. & MCGEER, P. L. (1963). Biochim. Biophys. Res. Commun., 13, 390-393.
- SUGIHARA, J. M. & BOWMAN, C. M. (1958). J. Am. chem. Soc., 80, 2443-2446.
- TEETER, R. M. (1966). Analyt. Chem., 38, 1736-1740.
- ZWOL, D. E. VAN (1966). J. Chromat., 24, 26-31.